海外におけるプローブ調査の 現状とわが国の今後

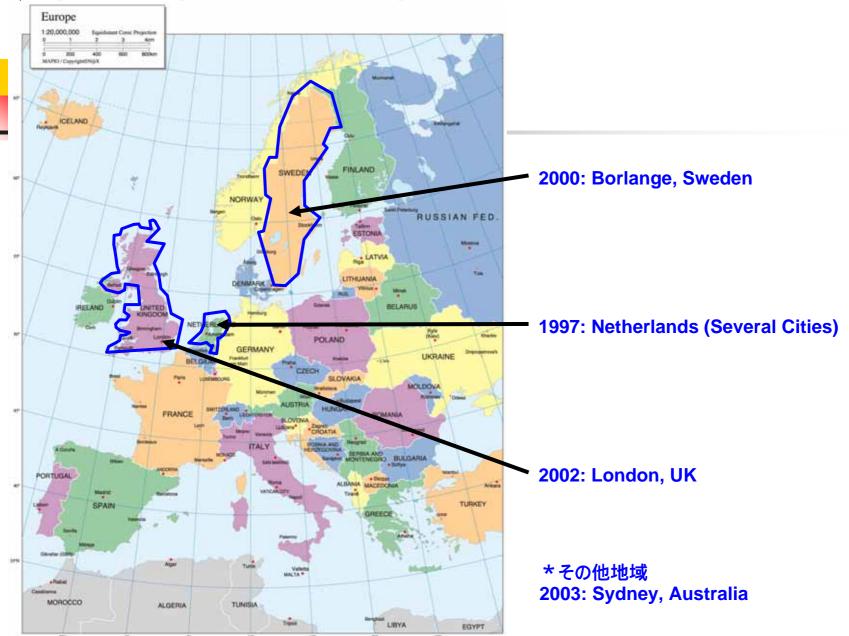
2005年6月18日 (財)計量計画研究所/IBS 牧村 和彦

発表内容

- 諸外国におけるプローブパーソン調査の 動向
 - 交通行動調査
 - 交通情報、道路交通行政への活用
 - 走行距離課金による行動分析
- わが国における課題


- 携帯型のプローブパーソン調査は、96~01年にかけ、交通行動調査としての有効性の検証が政府主導により、世界各地で行われ、
- 02年以降は、交通モデルへの活用、TFP調査への活用、ウェブ調査 と組み合わせた交通調査の改善など、実務での活用が積極的に進 められている

1996~2001 パーソン調査の付帯調査として実施 (プローブパーソン調査の有効性を実証)



2002~ 例えば、 1)経路把握調査、2)TFP調査 3)ウェブとの組み合わせ、4)走行距離計測 5渋滞予報 等

北米での代表的な取り組み

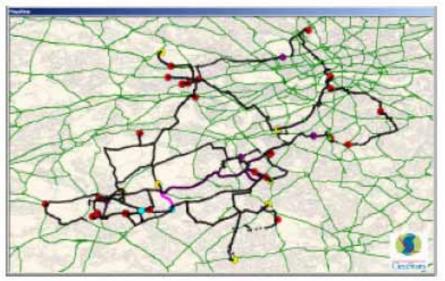
欧州での代表的な取り組み

代表的なプロープパーソン調査

国	対象地域	開始年	被験者		調査機器		
			世帯数	被験者(車両)数	車載型	携帯型	特記事項
米国	レキシントン	1996	100	294			PDAによるインタラクティブ 調査
米国	オースチン	1997	117	186			
カナダ	Quebec City	1998	3	3			
オランダ	数都市	1999	1	150			インタラクティブ調査
スウェーデン	Borlange	2000	1	310			
米国	カリフォルニア州	2001	517	776			
米国	アトランタ	2001	542	542			携帯電話によるインタラク ティブ調査(マルチモーダル も)
米国	アトランタ	2002		57			経路調査
米国	セントルイス	2002	313	666			
英国	ロンドン	2002	134	134			
米国	テキサス州ラレド	2002	200				
オーストラリア	キャンベラ	2004	294				TFP調査の可能性として
オーストラリア	シドニー	2004	34	53			ウェブ調査と組み合わせ

注)井坪慎二,牧村和彦:車の動きに関する観測技術とその展望,交通工学2004.11より加筆修正

ロンドン(2002)での事例


プローブパーソン調査デバイス

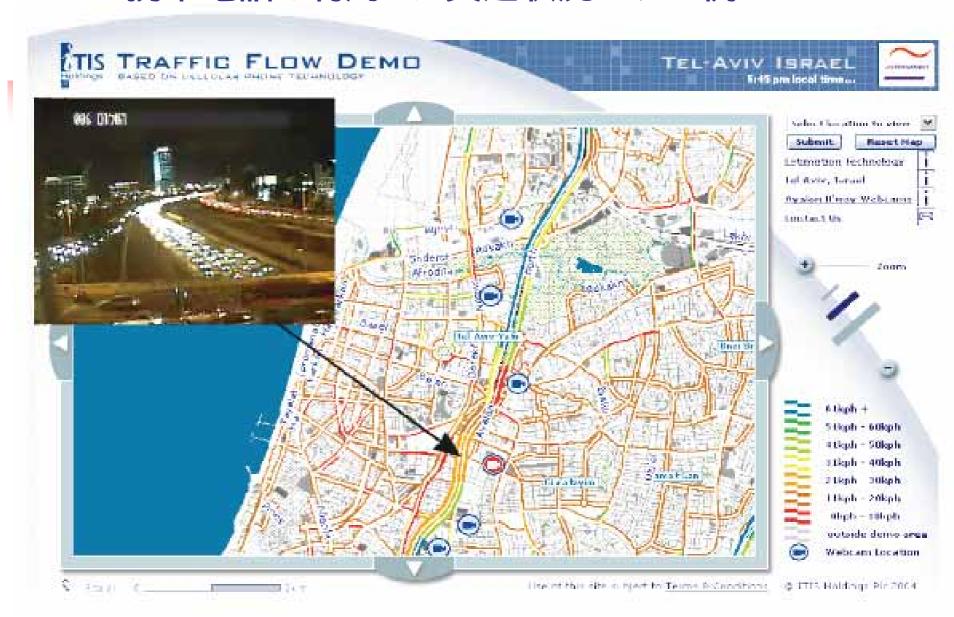
左:車載型、右:可搬型

·英国交通省(DfT)が実施

・2002年のロンドン都市圏交通調査 (LATS)の一環として、GPS調査のポテンシャルを研究

・LATS被験者から153名を抽出し、3 日間のダイヤリー調査を実施

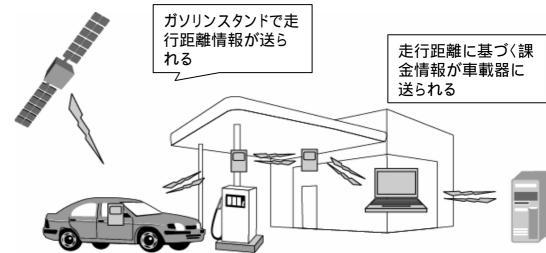
3日間のトリップの例


交通情報、道路交通行政活用

- オランダ、政府+LogicaCMG
 - Mobile Traffic Services
- ドイツヘッセン、PTV社、210万ユーロ
- スコットランド、政府+Applied Generics社
- ボルチモア、PPP
 - プローブパーソンデータの官民ビジネスモデル構築

ボルチモアの取り組み

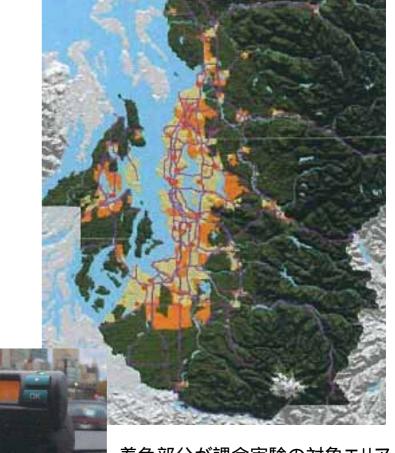
- 携帯電話を用いた交通データ活用
 - プローブパーソンデータに関する官民のビジネスモデル構築が 目的
 - 携帯電話の基地局情報から交通データを生成
- PPP:
 - Maryland State Highway Administration
 - the Baltimore Metropolitan Council
 - IT IS社&Delcan.Net 社
 - NET Corp. 携帯電話、他
- 2004年9月~2006年9月
- 取り組み
 - 現在:5分毎の旅行者情報提供、全エリアへ
 - 今後:歩行者交通量の予測、交通量データの予測、渋滞予報
 - 道路管理や道路計画への活用(官)


携帯電話を利用した交通状況のデモ例

走行距離課金の事前分析

- カリフォルニア州
- オレゴン州
- シアトルPSRC (Puget Sound Region Council)

オレゴン州の走行距離課金の仕組み


シアトルの事例 -The Traffic Choices Study-

目的

- 走行距離課金による交通行動の事前事後の変化を把握し、走行距離課金の適用可能性を検証
- FHWAのバリュープライシングプログラムの一環

■ 概要

- ドイツで行われている大型車課金と類似のシステム
- GPSと車載器により走行距離を算定し、 走行距離から毎月の利用額を請求する
- 2005年3月~、1年間
- 500台のモニター対象
- 予算:約230万ドル(約2.4億)

着色部分が課金実験の対象エリア

2.現在の政策評価の問題点と限界

- 個人に立脚しない指標の限界
 - 現在の指標の多くは区間や地点など(一部意識に関する指標)
 - 例)料金割引をすると、通勤時間は短縮される?経路はどう変化する?出発時刻を変更する?等が知りたい、評価したい
 - 多〈は、並行する交通量の調査や速度を調査
- 面としての評価が困難な問題
 - 環状道路やバイパスの整備をどのように事後評価する?
- 毎年のモニタリングに対する労力やコストの問題
 - 現在の方法は、これから何十年間と続けていける制度設計か?
- 都心再生、交通まちづくりのアウトカム不在
 - データがないから指標がない? or アイデアがないからデータがない?

適用分野

■ 交通まちづくりの計画、モニタリング

- 円滑化総合計画の立案と定期的なモニタリング
- 都心ビジョン、都心活性化計画の立案とモニタリング
- 都市圏総合交通戦略 (PT) や新都市OD調査とモニタリング

事業の評価

- 環状道路の整備
- 都心再生プロジェクト

■ 社会実験の評価

- 料金割引実験
- TDM
- オープンカフェ
- ITS(例:スマートIC)

■ 個別課題対応

- 観光行動調査
- 步行回遊行動調査、自転車行動調査
- 高齢者の行動調査
- 各種パネル調査

■ TFP(トラベル・フィードバック・プログラム)

総走行距離、CO2の長期計測

交通マネジメント

- 有料料金のモニタリング
- 災害時の経路案内
- 渋滞予報

需要予測

- 時間帯別手段別LOS
- 経路選択モデル
- シミュレーションの再現性評価

プローブパーソン調査の展望(期待)

プローブ パーソン調査

紙による調査

0-2年

2-3年

3-4年

4+

データ解析技術

トリップ分解技術 (移動-滞留判別)

マップマッチング 技術

交通手段の自動 判別

交通調査技術

大量データ処理 技術

データマイニング

交通目的の自動 判別

ジオコーディング

実務への適用に向けての課題

- 交通調査 ガイドライン、マニュアル化
 - サンプル数、抽出方法
 - ■被験者への説明会
 - デバイス(操作性、使い勝手他)
 - プライバシー問題
- 大規模サンプルを踏まえた技術開発
- ビジネスモデルの構築
- 教育、啓蒙

参考)プローブ関連年表1/2

	プローブカー	プローブパーソン	関連技術
			1987 AVIによる旅行時間情報 提供(新御堂筋:東寺内 町~堂山町間8.3km)
1995	サンアントニオでのタグによる旅行時間情報 提供(TxDOT)		
1996		レキシントンでの100世帯による実験(USDOT)	VICSサービス開始(東京 , 大 阪) PTPS導入開始(札幌)
1998	長野オリンピック開催時,除雪車の作業モニタリング実験(MLIT) 長野オリンピック開催時,光ビーコンのアップリンク情報を用いた情報提供実験(県警)	GPSを用いた基本性能検証実験(東大) 大阪でのPHSによる10名でのアクティビティ 調査(愛媛大学) 基本性能検証実験(国総研・IBS)	
1999		秋田でのPHSを用いた高齢者等30名のアクティビティ調査(東大) 大阪大相撲トーナメント時のPHSによる96名 のアクティビティ調査(愛媛大) 佐賀新都市ODでのPHSによる20名のアクティビティ調査(国総研・IBS)	
2000	東京都内40台のタクシー,トラックによる2年 間の収集実験(MLIT)	PEAMONの開発(愛媛大他)	

参考)プローブ関連年表2/2

	プローブカー	プローブパーソン	関連技術
2001	 横浜で300台,1ヶ月間の大規模実験(JARI) 		
2002	名古屋での1570台 , IP v 6 による実証実験 (インターネットITS)	ワールドカップ開催時のシミュレーション実験 (愛媛大) 福岡でのタグを用いた約600名の都心回遊行 動調査(MLIT) GPS携帯の基本性能検証(MLIT)	ETCサービス開始
2003	渋滞損失時間による道路行政マネジメントの本格実施(MLIT)	松山における311名を対象としたGPS携帯によるアクティビティ調査(愛媛大·MLIT)	
2004	曲率半径を用いた走りやすさマップの提供 (MLIT,九州エリア) カーナビでの情報提供サービス開始(ホンダ) マルチモーダル情報提供実験(P-DRGS)	松山における310名を対象としたGPS携帯によるアクティビティ調査(愛媛大·MLIT) 徳島での有料社会実験の評価,150名のGPS 携帯によるモニター実験(MLIT) 高知での有料社会実験の評価,200名のGPS 携帯によるモニター実験(MLIT)	
2005	万博時のスマートプレートを用いた情報提供実験(MLIT) 道路交通センサス(旅行速度調査)の実施予定 (MLIT)		

Contact Info

牧村 和彦 (財)計量計画研究所/IBS 交通研究室 室長 kmakimura@ibs.or.jp